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* Difficult of defining poverty
 More difficulty in measuring poverty

e Often discuss in terms of:
— Capabilities
— Economic wellbeing
—Social Inclusion/Exclusion
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e Poverty exists when resources shared with others in their
household do not meet basic needs

e Resources needed by a family of two adults and two
children to meet their basic needs define poverty
threshold in the U.S.

e Two measures of poverty
e Official U.S. Poverty Rate
e Supplemental Poverty Measure
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Resources are cash income

Shared by immediate family members

Poverty Rate

Official

Cash and non-cash resources (including
targeted government benefits) and housing

Shared by all residents of the household

Supplemental
Poverty Rate
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OFFICIAL U.S. POVERTY RATE
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* Average of 15% across the country and
ranges from 7.5% in NH to 21.2% in LA

e Reason for the focus on the SADA Area is
the perceived disparity between the
national and the SADA Area prevalence

of poverty
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All the world’s major And those who obey

religions encourage are rewarded in various
their adherents to take ways by the Supreme
care of the poor Being of that Faith
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e Equivalent to $17.12/person/day for a household of 4 people
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This Abundance is a Recent Phenomenon

Ghana GDP/Capita in 2000 U.S.S
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* Unless you have a handout, virtually no-
one self-identifies as “poor”

* So, we have resorted to imputing poverty
levels in almost all countries

—Imputed from expenditure
—With an assumed referent poverty line
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Household Food Consumption
Consumer Durables

Housing

Four categories
of expenditures

Non-Food Consumption
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Ancl our poverty line is set to one estanlisned oy
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Daily per capita household consumption expenditure is
imputed at the household level and not at the individual

level

Therefore, the denominator in the average prevalence is
the number of households and NOT total individual survey

respondents

This is also the approach used in the Supplemental Poverty
Measure (SPM)
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Prevalence of Household Poverty (PL=51.25)
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 What are the factors that explain poverty
in the SADA Area?

 How does knowing these factors help in the
development of sustainable poverty
reduction policies and programs for the

SADA Area?
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e Daily Per Capita Household Expenditure

e Household Size

e Age of Household Head

e Marital Status (Unmarried = 0; Married = 1)

e Education of Household Head (0=None; 1=Some)
e Gender (Female=0; Male=1)

e Locale of Residence (0=Rural; 1 = Urban)

e Wealth Proxy — Cell phone, transportation, house, ag and non-ag
Land (Owns=1)

e Region

K-State Flﬂw‘éwineﬂ'



oyed .. . .
E?fb?tye Right censoring provided

Model jnformation on people
and .
sssessed  Pelow the poverty line

both left
and right | eft censoring provided

censoring

at the information on people
Poverty  gbove the poverty line

line

Data-Driven Policymaking ’




* Locale and gender

* Education and gender

* Region and locale

* Marital status and gender
* Household size
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Variable PL>$1.25 PL<=51.25

DHPCE 4.88 0.97
Household Size 4.93 7.47
Age 44.38 47.56
Married 0.77 0.86
Gender 0.80 0.84
Education 0.44 0.32
Locale 0.29 0.13
Own Agland 0.82 0.91
Own Non-Agland 0.18 0.09
Own Transport 0.74 0.70
Own Cell 0.67 0.47
Own Dwelling 0.45 0.46
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Right Censored Tobit Model Results

Variables dy/dx SE z P>z Sig.
Household Size -0.07 0.00 -15.07 0.00 koK
Age 0.00 0.00 041 0.68
Married .0.04 0.05 -0.99 0.32
S Male -0.02 005 -053  0.59
- Some Education 0.10 0.04 2.56 0.01 S
| Urban 021 006 354 0.00 * kK
N Northern 026 0.07 -3.68 0.00  ***
Sal=2 Upper East 047 0.08 -620 0.00  ***
T C.l?: @ Upper West -0.35 0.09 -3.92 0.00 koxx
- ~ : OwnAgland -0.01 0.05 -0.29 0.77
= I ! Own Non-Ag Land 0.20 0.05 4.06 0.00 koK
o Nﬁ —_ Own Transport 0.20 0.05 3.93 0.00 * k%
S o S Own Cell 022 004 516 0.00  ***
5 = $ Own House 0.03 004 070 0.48
Sl Poor Dwelling 008 0.07 116 025
> b = Moderate Dwelling 0.15 007 207 0.04 *
Good Dwelling 0.24 0.07 3.31 0.00 o ke
Excellent Dwelling 0.29 0.12 2.35 0.02 o
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Left Censored Tobit IVIodeI Results

Variables dy/dx >7 Sig
Household Size -0.70 0.06 —10.88 o.oo *x
Age 0.00 0.01 0.82 0.41
Married -1.68 0.41 -4.08 0.00 koxok
= Male 0.82 0.27 3.07 0.00 *x
< SomeEducation | 078 | 021 | 375 | 0.00 | *** |
H Urban | 145 | 038 | 3.79 | 0.00 | *** |
N Northern -1.62 0.51 -3.18 0.00 o
COD\ 5\_4 Upper East -3.01 0.61 -4.93 0.00 o
NS S5 o Upper West -2.86 0.62 -4.58 0.00 *kk
| <t Y Own Agland -0.34 0.48 -0.71 0.48
z =
OISO Transport | 118 | 036 | 3.27 | 000 | **
NGO Cell | 158 | 029 | 553 | 000 | ***
23S & Own House 0.36 0.24 1.50 0.13
5 \lf X, Poor Dwelling 0.86 0.36 2.37 0.02 *x
5 o = Moderate Dwelling 148 038 391 000  ***
Good Dwelling 1.93 0.42 4.55 0.00 e
Excellent Dwelling 7.30 2.13 3.42 0.00 ok
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 We have been talking about poverty for
decades

— Poverty reduction/alleviation; Pro-poor
development; HIPC

* Despite significant efforts to reduce
poverty, our track record is not very good

—Not just in developing countries but
everywhere
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Self non-identification
Policies and

efforts

have not Non-market initiatives (public goods)
been
tracking
because of
a number
of issues ..
. Some self-
inflicted

Unclear operational objectives
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“Poor Poverty”

 Sundaram and
Chowdhury (2011)
— “Silver bullets”
— Micro-credits
— Land ownership
— Cash transfers
— Democratization
— Empowerment
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What demographic and household
characteristics have the highest probability of
defining who is in the “middle class”?
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* African Development Bank (2011)
* Kharas and Gertz (2010)

* Asian development Bank (2010)

* McKinsey Global Institute (2007)

¢ This is changing our focus from poverty to wealth R
creation
 Wealth is more tractable and decision-maker driven
N Help is appreciated not expected )
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A growing middle class is providing

insurance against slippage

Africa’s middle class, mostly in urban areas,
is projected to exceed that of China and
India by 2050
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Distribution of Households by AfDB Definition
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Distribution of Households by World Bank’s Definition

Over $13
4%
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Distribution of Households by Kharas’ Definition

$10-$100
6%

Under S10
94%
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DHPCE HH Size
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U.S.

Average
=2.55

age household size of Low
Income Class (7.01) is 3.4X

that of the High Income Class
(2.07), and 2.3X that of the

Middle Income Class (4.73)
\ %
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Average Age

Over $13

$2-513

Under $2
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Results of Middle Class v. Low Class

Middle Class RRR  SE z P>z Sig
Household Size 0.75 0.01 -19.42 0.00 e
—-----
o Married 0.76 0.08 -2.54 0.0
i —-----
RS © Some Education 147 011 497 0.00
T oo @ Urban 181 018 586 000  **
o o ! Northern 0.56 0.07 -4.47 0.00 rk
s 2 U?’_ Upper East 0.27 0.04 -9.24 0.00 b
536 o Upper West 020 0.03 -10.91 0.00  ***
VA Own Ag Land 062 008 -3.85 0.00  ***
S 28 © Own Non-Ag Land 1.75 019 515 0.00  ***
© Own Transport 1.63 0.16 5.15 0.00 xxk
© Own Cell 2.16 0.18 9.50 0.00 b
© Own House 1.21 0.09 250 0.01 e
Intercept 848 1.75 10.35 0.00
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Results of High Class v. Low Class

Middle Class RRR  SE z P>z Sig

Household Size 0.35 0.03 -14.28 0.00 fa
_-----

o Married 0.62 014 -2.05 0.04
« O Male 251 071 326 0.00  ***
A S © Some Education 1.87 037 3.19 0.00 @ ***
VS o ® urban 278 060 475 000  ***
> o | Northern 0.33 0.08 -4.44 0.00 e
SIP{ Upper East 0.15 0.05 -598 0.00  ***
5301 Upper West 022 0.07 -500 0.0  ***
VA Own Ag Land 031 007 -503 000  ***
S 28 © Own Non-Ag Land 418 096 619 000
© Own Transport 297 0.70 461 0.00
© Own Cell 444 111 595 0.00
@ Own House 1.86 039 297 0.00

Intercept 1.23 0.62 0.41 0.68
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Cellphone  Transport

Land House
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 Knowledge, they say, is power
* Knowledge comes from information
transformed into action

* Information comes from data organized
Into stories

e Stories come from the questions that

keep us awake at night about what we
care about (as individuals)
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* |n the end, what is driving every policy
decision | am privileged to make?

* How do | leave my signature on this space
and these resources that I’'m using?

 How do | become a better steward of our
limited resources?

e And can | dance into the sunset when I'm
done?
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Thank You, Akpeg, Ndase,

Nkpe, Taa Paya

vincent@ksu.edu




